<menu id="4oqga"></menu>
  • <strike id="4oqga"></strike>
    <ul id="4oqga"></ul><strike id="4oqga"><noscript id="4oqga"></noscript></strike>
    <center id="4oqga"><dd id="4oqga"></dd></center>
    <center id="4oqga"></center>
  • 地源熱泵工程設計方法與實例

    隨著我國建筑業(yè)持續(xù)發(fā)展,對建筑節(jié)能的要求越來越高,而供熱系統(tǒng)和空調(diào)系統(tǒng)是建筑能耗的主要組成部分,因此,設法減小這兩部分能耗意義非常顯著。地源熱泵供熱空調(diào)系統(tǒng)是一種使用可再生能源的高效節(jié)能、環(huán)保型的系統(tǒng)[1]。冬季通過吸收大地的能量,包括土壤、井水、湖泊等天然能源,向建筑物供熱;夏季向大地釋放熱量,給建筑物供冷。相應的,地源熱泵系統(tǒng)分土壤源熱泵系統(tǒng)、地下水熱泵系統(tǒng)和地表水熱泵系統(tǒng)3種形式。

    土壤源熱泵系統(tǒng)的核心是土壤耦合地熱交換器。

    地下水熱泵系統(tǒng)分為開式、閉式兩種:開式是將地下水直接供到熱泵機組,再將井水回灌到地下;閉式是將地下水連接到板式換熱器,需要二次換熱。

    地表水熱泵系統(tǒng)與土壤源熱泵系統(tǒng)相似,用潛在水下并聯(lián)的塑料管組成的地下水熱交換器替代土壤熱交換器。

    雖然采用地下水、地表水的熱泵系統(tǒng)的換熱性能好,能耗低,性能系數(shù)高于土壤源熱泵,但由于地下水、地表水并非到處可得,且水質也不一定能滿足要求,所以其使用范圍受到一定限制。國外(如美國、歐洲)主要研究和應用的地源熱泵系統(tǒng)以及我國理論研究和實驗研究的重點均是土壤源熱泵系統(tǒng)。目前缺乏系統(tǒng)設計數(shù)據(jù)以及較具體的設計指導,本文進行了初步探討,以供參考。

    1土壤源熱泵系統(tǒng)設計的主要步驟

    (1)建筑物冷熱負荷及冬夏季地下?lián)Q熱量計算

    建筑物冷熱負荷計算與常規(guī)空調(diào)系統(tǒng)冷熱負荷計算方法相同,可參考有關空調(diào)系統(tǒng)設計手冊,在此不再贅述。冬夏季地下?lián)Q熱量分別是指夏季向土壤排放的熱量和冬季從土壤吸收的熱量??梢杂上率龉絒2]計算:

    kW(1)

    kW(2)

    其中Q1'——夏季向土壤排放的熱量,kW

    Q1--夏季設計總冷負荷,kW

    Q2'——冬季從土壤吸收的熱量,kW

    Q2--冬季設計總熱負荷,kW

    COP1--設計工況下水源熱泵機組的制冷系數(shù)

    COP2--設計工況下水源熱泵機組的供熱系數(shù)

    一般地,水源熱泵機組的產(chǎn)品樣本中都給出不同進出水溫度下的制冷量、制熱量以及制冷系數(shù)、供熱系數(shù),計算時應從樣本中選用設計工況下的COP1、COP2。若樣本中無所需的設計工況,可以采用插值法計算。

    (2)地下熱交換器設計

    這部分是土壤源熱泵系統(tǒng)設計的核心內(nèi)容,主要包括地下熱交換器形式及管材選擇,管徑、管長及豎井數(shù)目、間距確定,管道阻力計算及水泵選型等。(在下文將具體敘述)

    2地下熱交換器設計

    2.1選擇熱交換器形式

    2.1.1水平(臥式)或垂直(立式)

    在現(xiàn)場勘測結果的基礎上,考慮現(xiàn)場可用地表面積、當?shù)赝寥李愋鸵约般@孔費用,確定熱交換器采用垂直豎井布置或水平布置方式。盡管水平布置通常是淺層埋管,可采用人工挖掘,初投資一般會便宜些,但它的換熱性能比豎埋管小很多[3],并且往往受可利用土地面積的限制,所以在實際工程中,一般采用垂直埋管布置方式。

    根據(jù)埋管方式不同,垂直埋管大致有3種形式:(1)U型管(2)套管型(3)單管型(詳見[2])。套管型的內(nèi)、外管中流體熱交換時存在熱損失。單管型的使用范圍受水文地質條件的限制。U型管應用最多,管徑一般在50mm以下,埋管越深,換熱性能越好,資料表明[4]:最深的U型管埋深已達180m。U型管的典型環(huán)路有3種(詳見[1]),其中使用最普遍的是每個豎井中布置單U型管。

    2.1.2串聯(lián)或并聯(lián)

    地下熱交換器中流體流動的回路形式有串聯(lián)和并聯(lián)兩種,串聯(lián)系統(tǒng)管徑較大,管道費用較高,并且長度壓降特性限制了系統(tǒng)能力。并聯(lián)系統(tǒng)管徑較小,管道費用較低,且常常布置成同程式,當每個并聯(lián)環(huán)路之間流量平衡時,其換熱量相同,其壓降特性有利于提高系統(tǒng)能力。因此,實際工程一般都采用并聯(lián)同程式。結合上文,即常采用單U型管并聯(lián)同程的熱交換器形式。

    2.2選擇管材

    2.3確定管徑

    在實際工程中確定管徑必須滿足兩個要求[2]:

    (1)管道要大到足夠保持最小輸送功率;

    (2)管道要小到足夠使管道內(nèi)保持紊流以保證流體與管道內(nèi)壁之間的傳熱。顯然,上述兩個要求相互矛盾,需要綜合考慮。一般并聯(lián)環(huán)路用小管徑,集管用大管徑,地下熱交換器埋管常用管徑有20mm、25mm、32mm、40mm、50mm,管內(nèi)流速控制在1.22m/s以下,對更大管徑的管道,管內(nèi)流速控制在2.44m/s以下或一般把各管段壓力損失控制在4mH2O/100m當量長度以下[1]。

    2.4確定豎井埋管管長

    地下熱交換器長度的確定除了已確定的系統(tǒng)布置和管材外,還需要有當?shù)氐耐寥兰夹g資料,如地下溫度、傳熱系數(shù)等。文獻[2]介紹了一種計算方法共分9個步驟,很繁瑣,并且部分數(shù)據(jù)不易獲得。在實際工程中,可以利用管材“換熱能力”來計算管長。換熱能力即單位垂直埋管深度或單位管長的換熱量,一般垂直埋管為70~110W/m(井深),或35~55W/m(管長),水平埋管為20~40W/m(管長)左右[3]。

    設計時可取換熱能力的下限值,即35W/m(管長),具體計算公式如下:

    (3)

    其中Q1'——豎井埋管總長,m

    L--夏季向土壤排放的熱量,kW

    分母“35”是夏季每m管長散熱量,W/m

    2.5確定豎井數(shù)目及間距

    國外,豎井深度多數(shù)采用50~100m[2],設計者可以在此范圍內(nèi)選擇一個豎井深度H,代入下式計算豎井數(shù)目:

    (4)

    其中N--豎井總數(shù),個

    L--豎井埋管總長,m

    H--豎井深度,m

    分母“2”是考慮到豎井內(nèi)埋管管長約等于豎井深度的2倍。

    然后對計算結果進行圓整,若計算結果偏大,可以增加豎井深度,但不能太深,否則鉆孔和安裝成本大大增加。

    關于豎井間距有資料指出:U型管豎井的水平間距一般為4.5m[3],也有實例中提到DN25的U型管,其豎井水平間距為6m,而DN20的U型管,其豎井水平間距為3m[4]。若采用串聯(lián)連接方式,可采用三角形布置(詳見[2])來節(jié)約占地面積。

    2.6計算管道壓力損失

    在同程系統(tǒng)中,選擇壓力損失最大的熱泵機組所在環(huán)路作為最不利環(huán)路進行阻力計算??刹捎卯斄块L度法,將局部阻力件轉換成當量長度,和管道實際長度相加得到各不同管徑管段的總當量長度,再乘以不同流量、不同管徑管段每100m管道的壓降,將所有管段壓降相加,得出總阻力。

    2.7水泵選型

    根據(jù)上述計算最不利環(huán)路所得的管道壓力損失,再加上熱泵機組、平衡閥和其他設備元件的壓力損失,確定水泵的揚程,需考慮一定的安全裕量。根據(jù)系統(tǒng)總流量和水泵揚程,選擇滿足要求的水泵型號及臺數(shù)。

    2.8校核管材承壓能力

    管路最大壓力應小于管材的承壓能力。若不計豎井灌漿引起的靜壓抵消,管路所需承受的最大壓力等于大氣壓力、重力作用靜壓和水泵揚程一半的總和[1],即:

    其中p——管路最大壓力,Pa

    po--建筑物所在的當?shù)卮髿鈮?,Pa

    ρ——地下埋管中流體密度,kg/m3

    g--當?shù)刂亓铀俣?,m/s2

    h--地下埋管最低點與閉式循環(huán)系統(tǒng)最高點的高度差,m

    ρh--水泵揚程,Pa

    3其它

    3.1與常規(guī)空調(diào)系統(tǒng)類似,需在高于閉式循環(huán)系統(tǒng)最高點處(一般為1m)設計膨脹水箱或膨脹罐,放氣閥等附件。

    3.2在某些商用或公用建筑物的地源熱泵系統(tǒng)中,系統(tǒng)的供冷量遠大于供熱量,導致地下熱交換器十分龐大,價格昂貴,為節(jié)約投資或受可用地面積限制,地下埋管可以按照設計供熱工況下最大吸熱量來設計,同時增加輔助換熱裝置(如冷卻塔+板式換熱器,板式換熱器主要是使建筑物內(nèi)環(huán)路可以獨立于冷卻塔運行)承擔供冷工況下超過地下埋管換熱能力的那部分散熱量。該方法可以降低安裝費用,保證地源熱泵系統(tǒng)具有更大的市場前景,尤其適用于改造工程[1]。

    4設計舉例

    4.1設計參數(shù)

    上海某復式住宅空調(diào)面積212m2。

    4.1.1室外設計參數(shù)

    夏季室外干球溫度tw=34℃,濕球溫度ts=28.2℃

    冬季室外干球溫度tw=-4℃,相對濕度φ=75%

    4.1.2室內(nèi)設計參數(shù)

    夏季室內(nèi)溫度tn=27℃,相對濕度φn=55%

    冬季室內(nèi)溫度tn=20℃,相對濕度φn=45%

    4.2計算空調(diào)負荷及選擇主要設備

    參考常規(guī)空調(diào)建筑物冷熱負荷的計算方法,計算得到各房間冷熱負荷并選擇風機盤管型號;考慮房間共用系數(shù)(取0.8),得到建筑物夏季設計總冷負荷為24.54kW,冬季設計總熱符負荷為16.38kW,選擇WPWD072型水源熱泵機組2臺,本設計舉例工況下的COP1=3.3,COP2=3.7。

    4.3計算地下負荷

    根據(jù)公式(1)、(2)計算得

    kW

    kW

    取夏季向土壤排放的熱量Q1'進行設計計算。

    4.4確定管材及埋管管徑

    選用聚乙烯管材PE63(SDR11),并聯(lián)環(huán)路管徑為DN20,集管管徑分別為DN25、DN32、DN40、DN50,如圖1所示。

    4.5確定豎井埋管管長

    根據(jù)公式(3)計算得

    m

    4.6確定豎井數(shù)目及間距

    選取豎井深度50m,根據(jù)公式(4)計算得

    圓整后取10個豎井,豎井間距取4.5m。

    4.7計算地埋管壓力損失

    參照本文2.6介紹的計算方法,分別計算1-2-3-4-5-6-7-8-9-10―11―11′-1′各管段的壓力損失,得到各管段總壓力損失為40kPa。再加上連接到熱泵機組的管路壓力損失,以及熱泵機組、平衡閥和其他設備元件的壓力損失,所選水泵揚程為15mH2O。

    4.8校核管材承壓能力

    上海夏季大氣壓力po=100530Pa,水的密度ρ=1000kg/m3,

    當?shù)刂亓铀俣萭=9.8m/s2,高度差h=50.5m

    重力作用靜壓ρgh=494900Pa

    水泵揚程一半0.5ρh=7.5mH2O=73529Pa

    因此,管路最大壓力p=po+ρgh+0.5ρh=668959Pa(約0.7Mpa)

    聚乙烯PE63(SDR11)額定承壓能力為1.0MPa,管材滿足設計要求。

    5結論地源熱泵系統(tǒng)在我國長江流域及其周圍地區(qū)具有廣闊的應用前景,但有關影響土壤源熱泵系統(tǒng)廣泛應用的主要因素(如地下熱交換器的傳熱強化、土壤性質等)的研究還很有限,設計時大致可以遵循以下原則:

    (1)若建筑物周圍可利用地表面積充足,應首先考慮采用比較經(jīng)濟的水平埋管方式;相反,若建筑物周圍可利用地表面積有限,應采用豎直U型埋管方式。

    (2)盡管可以采用串聯(lián)、并聯(lián)方式連接埋管,但并聯(lián)方式采用小管徑,初投資及運行費用均較低,所以在實際工程中常用,且為了保持各并聯(lián)環(huán)路之間阻力平衡,最好設計成同程式。

    (3)選擇管徑時,除考慮安裝成本外,一般把各管段壓力損失控制在4mH2O/100m(當量長度)以下,同時應使管內(nèi)流動處于紊流過渡區(qū)。

    收藏
    0
    有幫助
    0
    沒幫助
    0
    AV无码免费久久久精品,99精品全国在线观看,最新在线精品国自产一区,日韩AV毛片在线免费看
    <menu id="4oqga"></menu>
  • <strike id="4oqga"></strike>
    <ul id="4oqga"></ul><strike id="4oqga"><noscript id="4oqga"></noscript></strike>
    <center id="4oqga"><dd id="4oqga"></dd></center>
    <center id="4oqga"></center>